The recent results of solar neutrino measurement in Borexino

Yusuke Koshio On behalf of Borexino collaboration

Why solar neutrinos?

- Neutrino physics
 - MSW-LMA scenario is our current understandings
 Precise determination of the neutrino oscillation parameters
 - Any other possibility?
 ✓ Day/Night asymmetry
 ✓ Survival probability in v_e
- Solar astrophysics

- Verify the Standard Solar Model (SSM)
 Direct measurements for sub-MeV solar neutrino flux
 - ✓ Does CNO cycle really happen in the sun?
 - ✓ pep (1.1%) and pp (0.6%) are predicted with higher precision.
- Study the metallicity (High or Low) controversy
 - ✓ Differences are ~10% in ⁷Be, ~20% in ⁸B, ~30% in CNO

Solar neutrino spectrum

Laboratori Nazionali del Gran Sasso

TERAMO

120km from Roma

1300m underground (3500m w.e.)

BOREXINO

target : Solar Neutrinos The wide energy range in real time

are measurable.

 Geo Neutrinos SuperNova neutrinos Long/Short base line neutrinos • etc...

Detection principle

Solar neutrinos are detected through elastic scattering on electrons

Scintillation lights are emitted
✓ High light yield (~500 p.e. /MeV)
✓ Good timing response
✓ Pulse shape discrimination
but...

 $v_{solar} + e \rightarrow v + e$

- ✓ No neutrino direction
- ✓ No way to distinguish between neutrinos and β/γ backgrounds

Extreme radiopurity is required

(NIM A, 609, 1 (2009) 58)

	γ						ĥ	3	α		n			
	C	dopant dissolved in small water vial					²²² Rn loaded liq. scint. vial		Am-Be					
	⁵⁷ Co	¹³⁹ Ce	²⁰³ Hg	⁸⁵ Sr	⁵⁴ Mn	⁶⁵ Zn	⁶⁰ Co	⁴⁰ K	¹⁴ C	²¹⁴ Bi	²¹⁴ Po	n-p	n + ¹² C	n+Fe
Energy (MeV)	0.122	0.165	0.279	0.514	0,834	1.1	1.1 1.3	1.4	0.15	3.2	(7.6)	2.2	4.94	~7.5
	•	•	-		-		-		clea	r tag fr	om Bi	-Po		LowNu

fast coincidence

Position and Energy calibration

Results in ⁷Be neutrino

Reduction and signal extraction

A spectral fit was applied by solar neutrino signals and all the intrinsic backgrounds

Result of ⁷Be solar neutrino rate

⁷Be rate (E=862 keV line) in 750 days of data **46.0 ± 1.5 (stat)**^{+1.5}/_{-1.6} (sys) counts/(day x 100t) (total uncertainty is 4.7%)

Implication on solar physics

• Metallicity controversy Fit to the available all solar neutrino data leaving free f_{Be} and f_{BO} (f = $\Phi/\Phi(SSM)$)

Hard to discriminate

Other solar neutrino sources
 ^{0.7}
 ^{0.8}
 ^{0.9}
 ^{1.0}
 ^{1.1}
 ^{1.2}
 ^{1.0}
 ^{1.1}
 ^{1.2}
 ^{1.0}
 ^{1.1}
 ^{1.2}
 ^{1.1}
 ^{1.1}
 ^{1.2}
 ^{1.1}
 ^{1.2}
 ^{1.1}
 ^{1.2}
 ^{1.1}
 ^{1.2}
 ^{1.1}
 ^{1.2}
 ^{1.1}
 ^{1.1}
 ^{1.2}
 ^{1.1}
 ^{1.1}

$$\begin{split} \varPhi_{pp} &= (6.06 \stackrel{+0.02}{_{-0.06}}) \times 10^{10} \text{cm}^{-2} \text{s}^{-1} \ (f_{pp} = 1.013) \\ \varPhi_{CNO} &< 1.3 \times 10^9 \text{cm}^{-2} \text{s}^{-1} \ (f_{CNO} < 2.5) \ at \ 95\% \text{C.L.} \end{split}$$

Day/Night asymmetry in ⁷Be rate

- In the MSW scenario, the flux rate in Night should be higher than Day because of the regeneration effect.
- In the ⁷Be energy region, no effect expected in MSW-LMA region, but large in MSW-LOW region (~20%).

Day (positive Sun altitude) 360.25 days Night (negative Sun altitude) 380.63 days

No significant effect was found

$$Adn = \frac{N - D}{(N + D)/2}$$

= 0.001 \pm 0.012 (stat.) \pm 0.007(sys.)

Neutrino oscillation analysis

Results in pep and CNO

A challenging task

- Low signal rates with large backgrounds
 - A few cpd/100ton for signal, while ¹¹C as a dominant BG for pep is ~28 cpd/100ton.
 - External BG of ²⁰⁸TI, ²¹⁴Bi from PMTs, stainless steel sphere...
- How to separate?
 - Three Fold Coincidence
 - e+/e- pulse shape discrimination
 - Position distribution
 - Spectrum

Three Fold Coincidence

Veto using space-time correlation

e+/e- pulse shape discrimination

Positrons have different time profile and event topology with electrons.

• Form positoronium (51.2%, 3.12ns) (Phys.Rev.C 83(2010)015504)

Annihilation γs

Pulse shape parameter distribution in 0.9 - 1.8 MeV

External background

- Recognized by position and energy distribution by MC simulation
- Simulation validated with calibration data of high activity external ²²⁸Th source (arXiv 1110.1217)

Radial distribution in 1.2 - 2.8 MeV

Results of the spectrum fitting

pep rate:

 $3.1 \pm 0.6(\text{stat.}) \pm 0.3(\text{sys.})$ count/day/100ton \rightarrow (1.6 \pm 0.3) x 10⁸ cm⁻² s⁻¹ Main systematics: fit configuration / energy scale

First direct observation. (98%C.L.)

CNO rate:

< 7.9 count/day/100ton</p>
→ < 7.7x 10⁸ cm⁻² s⁻¹
(95%C.L. upper limit)

<u>Strongest constraint</u> (f_{CNO} < 1.4)

v_e survival Probability (Pee)

Consistent with MSW-LMA scenario

CNO measurement in future

• Similar spectra as ²¹⁰Bi difficult to separate...

Reduce as much as possible

Borexino phase II

- We have undertaken a series of purification campaigns (mainly water extraction and nitrogen stripping) to decrease radioactive backgrounds since July 2010.
- Significant removal of ²¹⁰Bi was found.
- Operation is now on-going.

Summary

- Precise measurement (<5% uncertainty) of the ⁷Be solar neutrino has achieved thanks to the internal source calibration.
- The analysis techniques have been able to suppress backgrounds.
- First direct measurement of pep neutrinos, and strongest constraint to CNO flux.
- Purification efforts are now on-going, which should improve the pep flux measurement and directly observe the CNO neutrinos.

Thank you for your attention

Backup

$\text{CNGS} \ v \ \text{velocity}$

- Activity is in progress to check the OPERA result about the CNGS neutrino velocity
- Need some hardware upgrade
- Ready for the 2012 beam
- Check the data already collected.
 - Time resolution was not accurate enough...
 - Independent way from OPERA all the steps of the measurement
- Also available to collaborate with OPERA

Metallicity controversy inside the sun

- "Improved" calculation of the solar composition changes the fluxes.
 - Z/X=0.0229(GS98)→0.0165(AGS05)

(X:hydrogen, Y:helium, Z:others)

- But, disagree with helioseismology ??
- Observed ⁸B flux $\phi_{8_{R}} = 5.3^{+0.1}_{-0.2} \times 10^{6} cm^{-2} s^{-1}$
- Precise ⁷Be flux may useful information.
- CNO v observation may solve the problem.
 - Study in progress in Borexino
 - One of goal for SNO+

22		GS98	AGS05		
••	рр	5.97x10 ¹⁰	6.04x10 ¹⁰		
	рер	1.41x10 ⁸	1.45x10 ⁸		
	hep	7.90x10 ³	8.22x10 ³		
~10%	⁷ Be	5.07x10 ⁹	4.55x10 ⁹		
	⁸ B	5.94x10 ⁶	4.72x10 ⁶		
	¹³ N	2.88x10 ⁸	1.89x10 ⁸		
~30%	¹⁵ O	2.15x10 ⁸	1.34x10 ⁸		
	¹⁷ F	5.84x10 ⁶	3.25x10 ⁶		

α/β discrimination

Significance of result (pep)

3.13 ± 0.55_{stat} counts/day/100ton

Significance of result (CNO)

 $\Delta \chi^2$ Profile for CNO v Rate °7 ™ High Z Low Z 68% C.L. 95% C.L. 99% C.L 10 12 CNO v rate / counts/(dayx100ton)

Upper limit (95% C.L.) <7.6 counts/day/ 100ton

pep fixed at SSM predicted value: 2.8 counts/day/ 100ton

Assuming MSW-LMA

Significance of result in pep and CNO analysis

Background suppression

• γs from rocks, PMT, tank, nylon vessel

- Detector design: concentric shells to shield the inner scintillator
- Material selection and surface treatment
- Clean construction and handling
- Internal background (²³⁸U, ²³²Th, ⁴⁰K, ³⁹Ar, ⁸⁵Kr, ²²²Rn)
 - Scintillator purification:
 - Distillation (6 stages distillation, 80 mbar, 90 $^\circ$ C)
 - Vacuum Stripping by LAK N₂ (²²²Rn: 8 μ Bq/m³, Ar: 0.01 ppm, Kr: 0.03 ppt)
 - Humidified with water vapor 30%
 - Master solution (PPO) purification:
 - Water extraction (5 cycles)
 - Filtration
 - Single step distillation
 - N₂ stripping with LAKN
 - Leak requirements for all systems and plants < 10⁻⁸ atm/cc/s
 - Critical regions (pumps, valves, big flanges, small failures) were protected with additional nitrogen blanketing

Primary sources of radio impurities

	source	Typical Concentrations	Borexino level	Removal strategy
¹⁴ C	Cosmic ray activation of ¹⁴ N	¹⁴ C/ ¹² C~10 ⁻¹²	¹⁴ C/ ¹² C<10 ⁻¹⁷	Old carbon (solvent from oil)
⁷ Be	Cosmic ray Activation of ¹² C	~3 cpd/ton	< 0.01 cpd/ton	Distillation, underground storage
²³⁸ U, ²³² Th	Suspended dust, organometallics	~ 1ppm in dust ~ 1ppb stainless steel ~ 1ppt IV nylon	~10 ⁻¹⁶ g/g(PC)	Distillation, filtration
K _{nat}	Suspended dust, Contaminant found in fluor	~ 1ppm in dust	<10 ⁻¹³ g/g(PC)	Distillation, water extraction, filtration
²²² Rn	Air and emanation from materials	~ 10Bq / m³ in air	~ 70 μBq / m³ in PC (0.3ev/day/100tons)	Nitrogen stripping
²¹⁰ Bi, ²¹⁰ Po	²¹⁰ Pb decay	2 x 10 ⁴ cpd/ton from exposing a surface to 10Bq/m ³ of ²²² Rn	<0.01 cpd/ton	Surface cleaning
⁸⁵ Kr, (³⁹ Ar)	air	1.1Bq/m ³ (13mBq/m ³) in air	$0.16 \mu Bq/m^3$ (0.5 μ Bq/m^3) in N_2 0.01 events/day/ton	Nitrogen stripping

33

Background : ²¹⁰Po

- In the start, ~6000 cpd/100ton
- The origin of the contamination is not known
- It is NOT in equilibrium with ²³⁸U nor ²¹⁰Pb
- It decays away as expected, (life time 200days)
- Can be rejected by pulse shape discrimination.
- The statistical subtraction is also used for spectrum fit.
- As for the ²¹⁰Bi, since no direct evidence, taken as a free parameter for spectrum fit.

LowNu

2011/11/9

34

Background : ⁸⁵Kr

- Probably because of a few litter air leak happened during filling.
- Since the spectrum of the β decay by ⁸⁵Kr is similar to the ⁷Be recoil electron spectrum, an estimation of the amount is important.
- The contamination can be measured directly by means of a relatively rare but easy-to-measure decay to excited 85Rb*.

- Measured with 751days of data
- 32 candidate events in final data sample
 - Calculate ⁸⁵Kr contamination is

 30 ± 5 cpd / 100ton

 \rightarrow Taken as free parameter in the spectrum fit.

⁸B neutrino measurement in Borexino

PRD 82 (2010) 0033006

Final spectrum above 3MeV

⁸B solar neutrino rate in Borexino

	3.0–16.3 MeV	5.0–16.3 MeV
Rate [cpd/100 t]	$0.22{\pm}0.04{\pm}0.01$	$0.13{\pm}0.02{\pm}0.01$
$\Phi_{ m exp}^{ m ES}$ [10 ⁶ cm ⁻² s ⁻¹]	$2.4{\pm}0.4{\pm}0.1$	$2.7{\pm}0.4{\pm}0.2$
$\Phi^{\mathrm{ES}}_{\mathrm{exp}}/\Phi^{\mathrm{ES}}_{\mathrm{th}}$	$0.88 {\pm} 0.19$	$1.08{\pm}0.23$

Comparison with the expectation

What's solar neutrino?

 \rightarrow ~10⁷years radiated from the center to the surface.